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ABSTRACT

Inherent instabilities in the radiative transfer for astrophysical masers have been recognized and calculated
in the linear maser idealization in our previous investigations. The same instabilities are now shown to occur
in the more realistic, three-dimensional geometries. Fluctuations in the emergent flux result and may be
related to the observed fluctuations in the radiative flux from the 1665 MHz OH masers that have been

reported to occur on timescales as short as 1000 s. The time-dependent differential equations of radiative
transfer are solved numerically for three-dimensional astrophysical masers. Computations are performed for
spherical and elongated (rectangular parallelepiped) geometries.

Subject headings: instabilities -- masers radiative transfer

1. INTRODUCTION

Clegg & Cordes (1991) have reported fluctuations of ~ 10%
in the flux of radiation from interstellar 1665 MHz OH masers

on timescales down to 1000 s. Calculations have been per-
formed in which inherent instabilities in the radiative transfer

are found to be a likely cause for the observed fluctuations
(Scappaticci & Watson 1992a, b; hereafter SW1 and SW2). The
occurrence of the instabilities has, however, been demonstrated
only in the usual idealization of a linear maser. In the linear
maser idealization, all rays of maser radiation follow the same
path through the maser. In actual astrophysical masers, the
rays are separated by distances of 1013-10 t4 cm the observed
dimensions of the masers. For significant fluctuations in the
observed maser flux, the entire cross section of the masing
region (or at least a large fraction) must respond collectively to
the instabilities. It may not be evident from the investigations
to date that such collective behavior is a consequence of the
instabilities that have been calculated for linear masers. The
purpose of this paper is the demonstration of these instabilities
for the radiative transfer in three-dimensional masers as rep-
resented by spheres and cylinders. Although the range of the
values for the relevant parameters in which the masers are
unstable (both linear and three-dimensional) has so far been
found to be limited to those that are plausible for the 1665
MHz and other 18 cm OH masers, the basic instability may
appear in other forms. Rapid time variations of the flux is a
pervasive feature of astrophysical masers (e.g., Argon et al.
1994).

In SWI and SW2, the instabilities were established both by a
linear stability analysis and by numerically integrating the full,
partial differential equations in space and time. The insta-
bilities were evident in both for exactly the same range of
values for the relevant parameters. This indicates that either
procedure is reliable. For the spheres and cylinders considered
in this paper, only the results of the numerical integration of
the full equations are used to examine the instabilities. They
are found to occur at essentially the same range of parameter
values as for linear masers--a result that tends to be reassuring
about the reliability of the calculations presented in § 3.

2. BASIC METHODS

The time-dependent equations of radiative transfer in three
dimensions are solved by generalizing our previous methods
for a linear maser in a straightforward manner, The masing
transition is treated in the common, two-level approximation
in which the interaction with other molecular states is approx-
imated by "phenomenological" pumping rates A and decay
rates F. With the usual Rayleigh-Jeans approximation for the
maser radiation, the time-dependent rate equation for the dif-
ference per unit volume between the populations of the upper
(u) and lower (/) states of the masing transitions is given by

Op FL 1-- 1 +fl' _' "dl'_ - _ p ---_p. , (I)H-- c

where

p(._, D = r(n. - nyAA (2)

is the normalized difference between the populations per mag-
netic substate of the upper (n,) and lower (n3 states at location
x and time t, AA = A, - A_, A is the Einstein coefficient for
spontaneous emission,
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v is the frequency of the maser transition, and

Ps = r(n. + nt)/AA = (A. + A3/AA = constant . (4)

The integral of the normalized brightness temperature 1'(i, _)
of the maser radiation over all angles at location i in equation
(1) gives the effect of stimulated transitions on the populations.
Normalized time and spatial coordinates/" = t/(L/c) and .i" =
x/L are expressed in terms of the characteristic distance L
which is the length for cylinders or the diameter for spheres.
Incident continuum radiation has a brightness temperature To.
The equation of radiative transfer for the intensity of maser
radiation expressed as a normalized brightness temperature
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_' (._,/) is then

dT d' ( hv hv )a--i+ pt + p + 2-E- op, , (5)

where _ is the normalized distance along the path of the ray of

radiation and

(C8+v3)r = g. Avv L, (6)

and 7'(._,/) is the actual brightness temperature divided by To.
As in the previous calculations, a rectangular distribution of

width Av in velocity is adopted for the molecular populations

and an analogous rectangular profile is adopted for the maser
radiation. Rapid relaxation of the molecular velocities is thus

assumed. Computations are then performed at only a single
velocity in equation (1) and frequency in equation (5). These

approximations were also made in the previous discussions
and were discussed at that time. Subsequently, computations

have been performed for a linear maser in which the Maxwel-
lian distribution for the particle velocities is retained. The dis-
tribution in frequency for _' is then obtained as a result of

solving equation (5) at a sufficient number of frequencies to

define the spectral line profile. The effect of these changes on

the stability of the masers is negligible (Emmering & Watson

1994).

To perform the computations, we proceed in the following

manner. Locations are specified at which the population differ-

ences p(._, t) are to be computed from equation (1). A separate

group of rays is then specified for each such location in order

to compute the integral of the intensity over angles that is

required in equation (1). A group of such rays is thus "centered

upon" the location at which the group is used for computing

p(._, t). That is, each member of the group passes through that
location and the directions of the rays are chosen for optimal

efficiency in computing the integral. These directions are, in

general, different for each location. Equation (5) is used to

compute the intensities along these rays as a function of time

and as a function of the distance along the rays by taking steps

As = cAt---exactly as was done in SW2. Here there are a large

number of rays, whereas in SW2 there were only two rays--the

"forward" and "backward" rays in the linear maser. In all

cases, we verify that the results are unaltered when changes are

made in the number of rays, the number of locations at which

p(._, t) is calculated, and the step size used in solving equation

(5). For a specified amount of computer time, we find that

optimal accuracy is achieved when the separation between the

locations at which the p(._, t) are computed is much greater (at

least a factor of 10) than the step size used in solving equation

(5) for the intensities. At intermediate locations, the p(_, t) are

obtained by interpolation. In the computations for the rec-

tangular parallelepiped, the p(._, t) are computed at the grid

points of an 8 x 8 x 16 lattice. For the sphere, the only

unstable modes that are identified are spherically symmetric.

The results presented here are thus based on computations in

which p(._, t) is found only at a number (24) of radial locations.

Exploratory computations have also been performed in which

radial symmetry is not imposed. Unstable, nonradial modes

have not been found. The sphere is inscribed within a

24 x 24 x 24 cubic grid of lattice points at which the popu-

lations p(i, t) are computed. A sphere having a diameter equal

to the length of an edge of the cubic grid is created by setting

the populations p(._, t) and Ps to zero outside of this spherical

volume. As a guideline, the approximate number of rays in a

group that is considered to perform the angular integral at

each location in equation (1) is the number of lattice points on

the surface of the rectangular parallelepiped or on the surface

of the cube. That is, approximately 640 (for the 8 x 8 x 16

grid) and 3456 (for the 24 x 24 x 24 grid), respectively. Sym-
metries can often be utilized to reduce this number. As in SW2,

the evolution of the system is initiated by instantaneously

"turning on" the pumping. That is, equations (1) and (5) are

solved beginning with p(._, r = 0)= 0 and T(._, _ = 0)= 1

everywhere. How the time evolution is begun was found to be

unimportant in SW2 for identifying instabilities and this start-

ing condition is computationally most efficient. After a long

time and regardless of the starting conditions, it was found that
the radiation from the unstable masers oscillates and that from

the stable masers becomes constant. Based on this criterion,

complete agreement is demonstrated in SW2 between the
results obtained from the time evolution and from the indepen-

dent, linear stability analysis with regard to which masers are
stable and which are unstable.

3. RESULTS

Computations are performed for spherical masers and for

elongated masers as represented by rectangular parallelepipeds

with square cross sections. The ratio of the lengths to the

widths of these rectangular parallelepipeds is 100. These are

intended to represent the extremes of the likely geometries. The

computations are quite time-consuming, and considerable care

must be taken to assure convergence. Only limited results are

presented (a) to establish that the basic instability does occur

for three-dimensional geometries and (b) to indicate that the

values for the parameters at which the instability occurs are
similar to those at which it occurs in the linear masers.

The occurrence of permanent oscillations for the emergent

maser radiation in Figures 1, 2, and 3 establishes that both
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FIG. l.--The emergent intensity (as represented by the natural log of the
normalized brightness temperature) vs. time for the ray of radiation that is
along the axis of an elongated, three-dimensional maser in the form of a
rectangular parallelepiped with a square cross section. Time is expressed in
units of L/c, where L is length of the maser. The maser has a length to width
ratio of 100. Results are shown for three choices of the relevant parameters.
Curve b represents an unstable maser; curve c, a stable maser and curve a, a
barely stable maser.
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Fla. 2.--The emergent intensity of maser radiation as a function of time,
with the same meaning as Fig. I, except that the influence of spontaneous
emission is examined. The importance of spontaneous emission depends upon
the parameters p, and To.

elongated and spherical masers are subject to the instability

identified in SWI and SW2. The intensities are presented in the
figures for only a single, representative ray of radiation. For
other rays, the variations are similar and have the same phase.

As for linear masers, the instability occurs when FL/c "_ 1
(where L is the length of the elongated masers or the diameter
of the spheres) and causes oscillations with a period of approx-

imately L/c. Comparison of curves b and c in Figure 1 indi-
cates that the instability also disappears at other FL/c. The
parameter ff here is analogous to fl in SWI and SW2. Just as

for the linear masers, the instability disappears for larger
values of this parameter. For the OH masers at 1665 MHz,
fl' = 1.4 x 10 -5 (To/100 K) (0.001 s-l/F). Plausible values for

To and F (e.g., SW 1 and SW2) are such that ff can be less than
10-5 as is indicated for instability in Figure 1. Spontaneous

emission was previously found to reduce the tendency for
instability in linear masers. It has the same effect in three-

dimensional masers as can be seen by comparing curve b of

Figure 2 with curve b in Figure 1. The relative importance of
spontaneous emission decreases with decreasing fractional
inversion in the pumping--a 1% difference between the
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FIG. 3.--Same as Figs. I and 2, except that here the maser is in the form of a
sphere for which the characteristic length L is the diameter of the sphere. The
intensity is shown for a ray that emerges along a diameter.

pumping rates of the upper and lower states corresponds to
p, = 50 and is a typical estimate for the 1665 MHz masers as is

To -_ 10-100 (e.g., SWI and SW2). The diagonal ray between

opposite corners of rectangular parallelepipeds is longer, and

thus tends to be more intense, than the ray along the axis. For

the aspect ratio (1t30) of the parallelepipeds in Figures 1 and 2,

the difference is negligible. This ray is, of course, included in the

computations. In exploratory computations for cubic and

other rectangular parallelepipeds with lower aspect ratios, the

instability persists and the time variations are similar in char-

acter to those presented in Figures 1 and 2. Obtaining con-

vergence is more difficult for spherical massers than for

elongated masers. The two computations are thus presented in

Figure 3 only to establish the principle that spherical masers

are also subject to the same instabifity. The stable solution is

presented to demonstrate that our computational methods

also lead to stable spherical masers and that this occurs for

parameter values at which it would be expected by analogy
with linear masers (here, at larger if). Spherical masers tend to

be more stable than elongated masers. For the instability of

spherical masers, and based upon the information from our

computations, fl' must be smaller by at least a factor of 10 than

for the elongated masers.

Application of the calculated instabilities to the observations

of Clegg & Cordes (1991) has been discussed in detail in SW2.
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